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1 Introduction

The recent banking crisis highlights the importance of liquidity risk. During the crisis,

market liquidity evaporated, and asset prices dropped sharply. At the same time, as funding

liquidity dried up, even well-capitalized banks found it difficult to roll over their short-term

debt and had to resort to central banks.

Market liquidity and funding liquidity are closely related. It is widely acknowledged that

market illiquidity contributes to funding illiquidity. As market liquidity diminishes, potential

fire-sale losses from early liquidation make creditors panic. As a result, the creditors can stop

rolling over their short-term debt and thus deprive a healthy financial institution of its funding.

Such funding liquidity risk has been emphasized by, among others, Morris and Shin (2000),

Rochet and Vives (2004) and Goldstein and Pauzner (2005). However, the literature has so far

ignored the fact that funding illiquidity also feeds market illiquidity: bank runs can lead to fire

sales, depress asset prices, and in extreme cases, freeze up markets.1

The current paper fills this gap by presenting a model where asset fire sales and bank runs

mutually reinforce each other. The feedback is driven by the lack of information. That is, a bank

that fails because of illiquidity cannot be distinguished from one that fails because of funda-

mental insolvency.2 We incorporate such information friction into a global-games-based bank

run model and endogenize fire-sale prices: asset prices are determined by the micro-foundation

of information asymmetry. As a defining feature that distinguishes the current model from the

literature, we have market participants’ beliefs, asset prices, and bank runs, all endogenous

and jointly determined in a rational expectations equilibrium. We prove that an equilibrium

exists and is unique. We also extend the theoretical framework to model financial contagion.

We show that contagion can be driven by creditors’ beliefs and emerge as a result of multiple

equilibria.

The intuition of our model is as follows. When asset buyers cannot distinguish assets sold

by an illiquid bank from those by an insolvent one, their offered price will be distorted down-

wards. As a result, the illiquid bank cannot recoup a fair value for its assets on sale. This

friction leads to a vicious circle. To begin with, low asset prices fuel bank runs: expecting

fire-sale losses caused by other creditors’ early withdrawals, a creditor has incentives to join

1For example, Acharya and Roubini (2009) documented how the early liquidation of two highly levered Bear
Stearns-managed hedge funds stressed the price of asset-backed securities.

2This is wildly recognized in the literature as well as in practice. In fact, it is considered the main challenge
for central banks to perform as a lender of last resort. See, for example, Freixas, Rochet, and Parigi (2004).
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the run. However, it is the run and early liquidation, by pooling illiquid banks with insolvent

ones, that leads to the drop in asset price in the first place. In this sense, creditors’ pessimistic

expectation realizes itself. With one more ingredient—an aggregate state, we show that finan-

cial contagion can happen in a similar manner. As the uninformed asset buyers form rational

expectations, they revise their beliefs about the aggregate state downwards upon observing any

bank runs. Their deteriorating expectations lower the asset price that they are willing to pay,

which, in turn, precipitates contagious runs on other banks.

Our model delivers three policy insights. First, while our paper confirms that well-capitalized

banks have larger buffers against fire-sale losses, our analysis also reveals that once asset prices

are endogenous, increasing capital can also have unintended consequences for liquidity via

buyers’ beliefs. In particular, buyers’ posterior beliefs about a bank’s asset value will deterio-

rate when a run happens to the bank, and the deterioration is particularly strong when the bank

maintains a high capital ratio. Because well-capitalized banks can sustain large losses, if a run

happens to such a bank, the bank’s losses must be unusually high. Therefore, given that a bank

faces a run, buyers’ valuation of its assets decreases in its capital level. Their low willingness to

pay makes the run more likely to happen in the first place. In its extremity, the model predicts

that increasing capital does not reduce bank funding liquidity risk at all.

Second, our model confirms the effectiveness of asset purchase programs in promoting

financial stability. We show that even if regulators have no better information than other market

participants, an asset purchase program can improve financial stability at no social cost. In an

asset purchase program where a regulator buys bank assets at a committed price, the vicious

cycle fueled by beliefs will break down. We emphasize that the lack of commitment by typical

asset buyers can be at the very root of financial instability. In particular, typical asset buyers

behave according to their rational beliefs, and would avoid losses in every perceived state. This

would generate the aforementioned vicious cycle because buyers’ pessimistic beliefs can lead to

negative market outcomes (e.g., more bank runs) which in turn justify themselves. A regulator

with commitment power, on the other hand, can resist such pessimistic belief updating. This

allows him to promote financial stability while breaking even from an ex-ante perspective.

Finally, when regulators have better information than typical market participants, the model

highlights a trade-off for regulatory disclosures.3 Our paper considers such regulatory disclo-

sures to be a double-edged sword: if the disclosed information reassures market participants,

3For instance, whether or not regulators should disclose information concerning their assistance programs.

3



banks can be saved from illiquidity. However, if the disclosure adds to pessimistic market be-

liefs, the disclosure itself can lead to financial vulnerability. This is because once the severity

of the problem is acknowledged, market participants will further revise down the expected per-

formance of all banks’, leading to greater fire-sale losses and triggering illiquidity, even for

healthy banks.

Our theoretical framework is related to the literature on bank runs and financial contagion.

Since Diamond and Dybvig (1983), the literature has been concerned with the financial fragility

caused by bank runs.4 Following their seminal contribution, there was a debate as to whether

bank runs are due to pure panic or unfavorable information on banks’ fundamentals.5 The gap

between the panic and fundamental view was bridged by the application of global games. Using

the concept, papers such as Morris and Shin (2000), Rochet and Vives (2004) and Goldstein and

Pauzner (2005) refined the multiple equilibria in Diamond and Dybvig (1983) and emphasized

the role of fire-sale losses in causing bank runs. That is, to prevent runs, an extra buffer of

cash flow is needed against fire-sale losses. A bank that fails to provide the extra buffer become

“solvent but illiquid”—being able to repay its debts in full if no run happens, but to be liquidated

early if its creditors do not roll over their debt. But a limitation of the existing models is that

they build on the simplifying assumption of exogenous fire-sale losses,6 so that the models

ignore the explicitly exclude the possibility for bank runs to affect asset prices. In contrast,

the current paper explores the relationship: as it is difficult to distinguish illiquid banks from

insolvent ones, the adverse selection causes low asset prices and fire-sale losses.7

A natural corollary of assuming an exogenous fire-sale price is that funding liquidity risk

will be always reduced by higher capital, because the returns generated on capital add to

the buffer against fire-sale losses. With endogenous fire-sale prices the current paper takes

a broader view: while acknowledging the buffer effect of capital, we point out that greater

capital can also contribute to illiquidity via buyers’ pessimistic inference.

4It should be mentioned that some papers also consider the positive role of bank run as disciplinary device:
Calomiris and Kahn (1991) and Diamond and Rajan (2001).

5Papers emphasizing banks’ weak fundamentals in causing runs include Chari and Jagannathan (1988), Jack-
lin and Bhattacharya (1988) and Allen and Gale (1998). Friedman and Schwartz (1963) provide empirical support
for the panic view. Contradicting evidence in favor of the fundamental view is present in Gorton (1988), Calomiris
and Gorton (1991) and Calomiris and Mason (2003).

6For example, Rochet and Vives (2004) assume an exogenous fire-sale discount and Morris and Shin (2009)
assume an exogenous haircut.

7While the current paper justifies the low asset price by informational frictions, low asset prices can also be
explained by fixed short-term cash supply—the cash-in-the-market argument pioneered by Shleifer and Vishny
(1992) and Allen and Gale (1994).
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In predicting an interaction between market liquidity and funding liquidity, our model is

most closely related to Brunnermeier and Pedersen (2009), who emphasize a haircut constraint

on a speculator that supplies liquidity to a financial market with limited participation. In their

model, asset prices are volatile because there is an asynchronization between selling and buy-

ing. This paper differs from theirs in two aspects. First, the funding liquidity risk arises as a

result of equilibrium bank runs caused by the wholesale creditors’ coordination failures. Sec-

ond, this paper emphasizes the asymmetric information on asset qualities, and how such adverse

selection causes asset illiquidity.

In our paper, contagion is generated not only by the actual realization of a common risk fac-

tor but also by its perception: A bank failure casts shadow on the perceived common risk factor;

and the resulting negative informational externalities affect all the other banks. This observa-

tion is mostly related to the literature of information contagion, as exemplified by Acharya and

Thakor (2011) and Oh (2012).8 Compared to the existing work, the current paper emphasizes

the self-fulfilling nature of such contagion and the two-way feedback between runs and asset

fire sales.

On the application to capital requirements, the paper relates to a few papers that show in-

creased capital requirements can increase bank risk. Martinez-Miera (2009) argues that equity

increases banks’ cost of funding, which leads to higher loan rates and spurs risk-taking by bor-

rowers. As a result, banks’ portfolio risk rises passively. Hakenes and Schnabel (2007) argue

that a higher capital requirement erodes charter value and induces banks to actively take high

risks; when the higher capital requirement decreases credit supply, it also leads to borrower

risk-taking via a hike in loan rate. What all these papers have in common is that they all focus

on solvency risk. To the best of our knowledge, the current study is the first to show capital can

contribute to illiquidity, contagion and systemic risk.

On asset purchase programs, our paper is mostly related to the empirical policy evaluation

in Veronesi and Zingales (2010). The authors used Black-Scholes-Merton model to evaluate the

ex-ante costs and benefits of “Paulson’s Plan”, and concluded that the intervention yielded “a

net benefit between $86 and $109 bn”. The policy evaluation in our theoretical model also takes

an ex-ante perspective, and confirms the effectiveness of asset purchase programs in promoting

financial stability.

8There are other approaches to model contagion. For instance, Freixas and Parigi (1998) and Freixas, Parigi,
and Rochet (2000) model the direct linkages of banks through payment system. Allen and Gale (2000) emphasize
the role of interbank market. Gorton (1988) studies banks’ common risk exposures directly contribute to systemic
risk.
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The discussion on disclosure policy is most related to several recent papers on the instability

consequences of public signals: Morrison and White (2013) concern that a public bailout can

reveal regulatory deficiency and make market participants lose their confidence in all other

banks under the same regulation. Dang, Gorton, and Holmström (2010) show that a public

signal could increase adverse selection to debt-like securities that are otherwise information

insensitive. Wang (2013) empirically documents that after individual banks were identified

in Trouble Asset Relief Program (TARP), bank run probabilities, as reflected in CDS spread

and stock market abnormal returns, rose dramatically, an outcome the author attributes to the

bad news nature of public bailout. Our paper abstracts from specific policy announcements

and shows that as long as market participants believe the regulator is better informed, any

regulatory action and announcement concerning banks’ common risk exposure may generate

financial contagion.

The paper proceeds as follows. Section 2 lays out the model. Section 3 presents the base-

line bank-run model with endogenous fire-sale prices. With only one bank and one state, the

baseline model allows us to discuss the first policy issue such as whether higher capital can

effectively reduce funding liquidity risk. In Section 4, we analyze contagion in a fully-fledged

model with two banks and two states. We show that even if a regulator has no better informa-

tion than typical market participants, asset purchase programs can improve financial stability

at no social cost. In Section 5, we discuss the trade-off associated with regulatory disclosures.

Section 6 concludes.

2 Model setup

We consider a three-date (t = 0, 1, 2) economy with two banks.9 At t = 0, banks are

identical. Each of them holds a unit portfolio of long-term assets, and finances them with

equity E, retail deposits F, and short-term wholesale debts 1 − E − F. There are two groups

of active players: banks’ wholesale creditors and uninformed buyers of banks’ assets. Both

groups of players are risk neutral. We assume that retail deposits are fully insured so that

depositors act only passively. Since their claims are risk free, the depositors will always hold

their claims to maturity, and demand only a gross risk-free rate which we normalize to 1. We

also assume that the financial safety net is provided to banks free of charge. We consider banks

9It should be emphasized that all results of the current paper can be generalized to a N-bank case.
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as contractual arrangements among claim holders, designed to fulfil the function of liquidity

and maturity transformation (Diamond and Dybvig (1983)). Therefore, banks in our model are

passive, with given loan portfolios and liability structures.

Banks’ wholesale debt is risky, demandable, and raised from a continuum of creditors.

Provided that a bank does not fail, a wholesale debt contract promises a gross interest rate

rD > 1 at t = 2, and qrD if a wholesale creditor withdraws early at t = 1. Here q < 1 reflects the

penalty for the early withdrawal. A bank run occurs if a positive mass of wholesale creditors

withdraw funds from their bank at t = 1. For the ease of future exposition, we denote by D1 the

total amount of debt a bank needs to repay at t = 1 if all wholesale creditors withdraw early,

and by D2 the total amount of debt a bank needs to repay at t = 2 if no wholesale creditor

withdraws early.

D1 ≡ (1 − E − F)qrD

D2 ≡ (1 − E − F)rD + F

A bank’s portfolio generates a random cash flow θ̃ at t = 2. For simplicity, we assume

that θ̃ follows a uniform distribution on
î
θs, θ
ó
, and the random cash flows of the two banks are

independent and identically distributed. Subscript s denotes the realization of an aggregate state

that affects both banks. There are two possible states, G and B (e.g., housing market boom or

bust), and the two states occur with equal probability. With θG > θB, State G is more favorable

than State B. Therefore, the value of a bank’s assets is not only affected by its idiosyncratic

risk (the realization of θ̃) but also by the aggregate risk s. On the other hand, θ is assumed to be

the same across states. This reflects the fact that banks hold mostly debt claims whose highest

payoffs are capped by their face values. We make the following three further assumptions on

parameters.

D2 > θs (1)Ä
θB + θ

ä
/2 > D2 (2)

F > D1 (3)

As D2 denotes a bank’s total debt obligation at t = 2, inequality (1) states that there is a positive

probability of bankruptcy in each state. Inequality (2) states that, in the absence of bankruptcy
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costs, even if the realization of the state is unfavorable, the expected cash flow from a bank’s

assets is still greater than its debt obligations, so that bank lending is viable. Finally, inequality

(3) states that a bank’s retail debts exceed its wholesale debts, which is a realistic scenario and

helps to simplify the analysis of bank run games.10 We also assume that bankruptcy costs are

sufficiently high such that once a bank fails, the wholesale creditors get zero payoff and only a

deposit insurance company obtains the residual value.11

Banks’ assets are long-term, taking two periods to mature. In particular, we assume that at

t = 1 the assets cannot be physically liquidated. Therefore, if a wholesale run happens, to meet

the liquidity demand, a bank has to financially liquidate its assets in a secondary asset market,

and sell them to outside asset buyers. Because early liquidation is costly in this model, a bank

will sell its assets if and only if it faces a bank run.

2.1 Secondary asset market

Potential buyers in the secondary asset market are uninformed: they are unable to observe

either the aggregate state s or any bank’s cash flow θ. Yet, they can observe the number of

bank runs, and based on the observable outcome, form rational expectations about the quality

of assets on sale. In this two-bank setup, there are three distinct outcomes from the buyers’

perspective, i.e., the number of bank runs N = 0, 1, or 2.

We assume the following sequential moves between asset buyers and wholesale creditors.12

Asset buyers first post a price scheme P = (P1 P2), and offer to purchase bank assets on sale at

price P1 when the number of bank runs N = 1, and P2 when N = 2. Having observed the price

scheme, wholesale creditors play a bank run game, making their individual decisions simulta-

neously on whether to withdraw their funds early. In case any bank run happens, transactions

take place at the offered price, and assets are transferred to buyers.

The price scheme P is complete in the sense that an asset price is specified for each distinct

outcome of the bank run game where bank assets are on sale. Depending on the number of runs

observed, the prices that buyers offer can differ. In fact, in the absence of commitment power,

the asset buyers’ decisions need to be time consistent so that they will not revoke their posted
10The condition is more than a technical assumption. It is realistic in the sense that despite of the rapid

growth of wholesale funding, most commercial banks and bank holding companies are still financed more by
retail deposits than wholesale debt.

11It should be noted that this is off equilibrium in the model, because the wholesale debt is demandable and the
wholesale creditors will withdraw early at t = 1, before the bank fails.

12It should be emphasized that the results of the model are robust to timing. If asset buyers and wholesale
creditors move simultaneously, one can derive the same results based on the rational expectations of both parties.
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price after the outcomes of bank run games are revealed. As a result, the price P1 and P2 will

have to reflect buyers’ posterior beliefs on asset qualities. As buyers form different posterior

beliefs when observing different numbers of bank runs, their offered prices will vary with the

number of bank runs.

The asset market is assumed to be perfectly competitive, and the buyers compete in the

price schemes that they offer. In equilibrium, based on their posterior beliefs, the asset buyers

should perceive themselves breaking even in expectation when purchasing bank assets at their

posted prices. As the buyers make time-consistent decisions and do not revoke their offers, they

must make no loss for any realized number of bank runs.

2.2 Bank run game

The demandable nature of wholesale debt allows creditors to withdraw their funds before

a bank’s assets mature, forcing the bank to liquidate its assets prematurely. When assets are

sold for less than their fundamental values, there will be an early liquidation loss, or an asset

fire sale. While the creditors who withdraw early can avoid suffering from the fire sale, those

who do not withdraw will receive zero payoffs if the bank fails. As a result, creditors’ actions

to withdraw display strategic complementarities, and it can be in the interest of all creditors to

run on a bank that is otherwise solvent.

A bank run game of complete information can have two strict equilibria: all creditors with-

draw from the bank, and nobody withdraws. To refine the equilibria, we take the global-games

approach pioneered by Carlsson and Van Damme (1993) and study games with incomplete in-

formation, where common knowledge on θ does not exist among creditors. We assume that

at the beginning of t = 1, both aggregate risk (State s) and idiosyncratic risk (cash flow θ)

have been realized, but the information is not fully revealed to players. For a given bank, each

individual creditor privately observes only a noisy signal xi = θ + εi. The noise εi is drawn

from a uniform distribution with a support [−ε, ε], where ε can be arbitrarily small. Based on

their private signals, the creditors play a bank-run game with each other. Each of the creditors

has two possible actions: to wait until maturity or to withdraw early, and follows a threshold

strategy: withdraw early if and only if their individual private signal is lower than a critical
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level x̂. In this two-bank setup, we also assume that each creditor holds claims in both banks,

and observes independent noisy signals for both banks’ cash flows.13

The maturity mismatch between banks’ liabilities and assets, together with potential asset

fire sales, exposes banks to the risk of runs. In particular, a run and premature liquidation at

t = 1 can cause the failure of a bank that is otherwise solvent at t = 2. In order to reassure

its creditors not to withdraw early, a bank has to be more than merely solvent, and should be

able to absorb potential fire-sale losses. This implies a critical cash flow θ̂ > D2 for a bank

to survive a run. The distance between θ̂ and D2 provides a measure of financial vulnerability.

Moreover, a lower asset price implies greater fire-sale losses, and a higher critical cash flow θ̂

for a bank to survive a run.

Given our assumption that bankruptcy costs are sufficiently high, if a bank is to fail at t = 1,

a wholesale creditor will receive zero payoff whether he withdraws early or not. In this case

of indifference, we assume that the creditor will always withdraw. One justification is that

wholesale creditors receive reputational benefits by running on a bank that is doomed to fail.14

2.3 Asymmetric information on cash flow θ

We assume that asset buyers can solve the creditors’ bank run game and thereby form

rational beliefs on the qualities of assets on sale. In particular, they know that a bank will be

forced into an asset sale if and only if its cash flow is below θ̂. However, the lack of more

detailed information makes solvent banks (those with D2 ≤ θ < θ̂) indistinguishable from the

insolvent ones (those with θ < D2). An equilibrium asset price reflects only the average quality

of assets on sale, so a bank with cash flow θ greater than the price but less than θ̂ will face an

asset fire sale.

A lower asset price pushes θ̂ the critical cash flow necessary to avoid a run upwards. Thus,

there will be two-way feedback between asset fire sales and bank runs. When asset buyers offer

a low price for a bank’s assets, a run is triggered, which generates the pooling of assets, and

thus fully justifies the low asset price offered in the first place. As a result, both fire sales and

bank runs can reinforce each other.

13It is not uncommon for institutional investors to hold demandable debt claims in multiple banks. A similar
assumption can be found in Goldstein and Pauzner (2004).

14The reputational benefit may come from the fact that the creditor makes a “right decision”. For more detailed
discussion on this assumption, see Rochet and Vives (2004). The authors argue that the vast majority of wholesale
deposits are held by collective investment funds, whose managers are compensated if they build a good reputation,
and penalized otherwise.
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2.4 Belief updating on State s

While asset buyers hold a prior belief that State B and G occur with an equal probability,

after observing any bank runs, they update their beliefs according to Bayes’ rule and consider

State B to be more likely. The pessimistic belief updating can lead to financial contagion. In

particular, a bank may face no runs if the other bank does not face a run, but will face a run if

the other one does. This defines financial contagion in our model.

In the current model, financial contagion is self-fulfilling too. When observing more bank

runs, asset buyers infer State B to be increasingly likely and reduce their offered asset prices

accordingly. The fear of increased liquidation losses makes wholesale creditors panic even

more, and leads to simultaneous bank runs in the first place.

2.5 Timing

The timing of the model is summarized in Figure 2. Events at t = 1 take place sequentially.

Figure 1: Timing of the game

t = 0 t = 1 t = 2

Banks are established,
with their portfolios
and liability structures
as given.

1. s and θ are realized.
2. Asset buyers post a price scheme.
3. For each bank that they lend to, creditors
receive private noisy signals about the bank’s
cash flow θ, and decide to run or not.
4. After observing the number of bank runs,
buyers purchase assets at the quoted price.

1. Returns become
public.
2. Remaining obliga-
tions are settled.

3 Self-fulfilling bank runs and fire sales

Depending on the realization of θ̃, the model can have two types of equilibria: one type

with bank runs, and the other without. A market equilibrium with bank runs consists of two

components. First, the bank run games feature threshold equilibria. That is, when N runs

happen and bank assets are sold for an equilibrium price P∗N , a bank will experience a run if

and only if its cash flow is lower than a unique threshold θ∗N ≡ θ̂(P∗N), N ∈ {1, 2}. Second,
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the competitive asset market is in a rational expectations equilibrium. That is, asset buyers

form a rational belief about the quality of assets on sale based on the observed number of bank

runs N. In particular, they anticipate θ < θ̂(P∗N), and Bayesian update their beliefs on State s.

According to such posterior beliefs, asset buyers who purchase bank assets at an equilibrium

price P∗N should perceive themselves to break even in expectation. Moreover, the buyers should

find themselves unable to profitably deviate from bidding P∗N .

Definition. Denote θ̂ (PN) the threshold equilibrium of the bank run game for a given asset

price PN; and PN

Ä
θ̂
ä

the price scheme by which asset buyers break even in expectation for

a given threshold θ̂ and their rational beliefs about θ and s. An equilibrium associated with

N bank runs, N ∈ {1, 2}, is defined by an equilibrium critical cash flow θ∗N ≡ θ̂
(
P∗N
)

and an

equilibrium asset price P∗N ≡ PN
(
θ∗N
)
. The combination of θ∗N and P∗N is such that: for the N

bank runs in the economy, (1) a successful run happens to a bank if and only if the bank’s cash

flow is lower than θ∗N; (2) the competitive asset market is in a rational expectations equilibrium:

asset buyers form rational beliefs about State s and the quality of assets on sale, and based on

their posterior beliefs, perceive themselves to make zero profit in expectation by purchasing

bank assets at P∗N . Furthermore, the buyers cannot make any profitable deviation.

It takes four steps to obtain the equilibrium.

• First, we show that equilibrium asset prices P∗N cannot be lower than D1 or higher than

D2 (subsection 3.1). This restricts the set of candidate equilibria and will facilitate the

solution of bank run games.

• Second, solving the model using backward induction, we start with creditors who move

last and solve the bank run game using the concept of global games. For a given asset

price PN ∈ (D1,D2), we derive a unique critical cash flow θ̂ (PN), so that a bank run will

happen if and only if the bank’s cash flow θ < θ̂ (PN) (subsection 3.2).

• Third, we characterize asset buyers’ posterior beliefs on asset qualities when N bank runs

occur. In particular, they expect only those assets with quality θ < θ̂(PN) to be on sale,

and update their beliefs about State s using Bayes’ rule. It should be emphasised that the

buyers’ rational beliefs are functions of asset prices that they offer (subsection 3.3).

• Finally, we solve for the equilibrium of the model by examining equilibrium asset price

schemes. As asset buyers offer different prices given different numbers of bank runs, we

solve for equilibrium prices P∗N for each N ∈ {1, 2}. For N observed bank runs, in a
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competitive equilibrium, P∗N should be equal to the expected asset quality based buyers’

posterior beliefs (subsection 3.3).

To illustrate the main intuition behind the feedback between bank runs and fire sales, we

present in subsection 3.4 a simplified version of the model where there is only one state so that

asset buyers cannot update their beliefs on State s. This simplification allows us to derive a

closed-form solution to our model, and is sufficient to generate some interesting results such as

the unintended liquidity consequences of bank capital. The fully-fledged model with different

states and asset buyers’ belief updating on s is analyzed in section 4.

3.1 Restricting the set of candidate equilibria

Since an equilibrium price cannot be negative, a candidate equilibrium price P∗N can only

fall into one of three regions, 0 ≤ P∗N ≤ D1, D1 < P∗N < D2, and P∗N ≥ D2. We discuss

the existence and uniqueness of equilibrium for each of the three regions, and show that any

equilibrium price P∗N cannot be lower than D1, nor greater than D2 provided that F > D1.

Suppose P∗N ≥ D2. Then, for any bank with θ ∈ [D2, θ], it is suboptimal for its wholesale

creditors to withdraw early. This is because with P∗N ≥ D2, an asset sale at t = 1 will not

hurt the bank’s capability to repay its liabilities at either t = 1 or t = 2. As a result, by

running on the bank, a creditor will only incur the penalty for early withdrawal. This implies

that whenever a run happens, it must be the case that the bank is fundamentally insolvent with

θ < D2. Therefore, the highest asset quality that buyers can expect is D2, with the expected

quality strictly lower than that. Because asset buyers break even and pay a price equal to the

expected quality, the price that the buyers are willing to pay must be strictly smaller D2. This

contradicts the presumption P∗N ≥ D2.

Now, suppose P∗N ≤ D1. Then, a bank with θ ∈ [θs,D2] will fail for sure, either because

sufficiently many creditors run at t = 1, or because of fundamental insolvency at t = 2. Under

the assumption that wholesale creditors run on banks that are doomed to fail, we know that

successful runs must happen to those banks with θ ∈ [θs,D2]. This implies that the expected

quality of assets on sale is at least (θB + D2) /2. As asset buyers only break even in equilib-

rium, the price they offer must be greater than that. Therefore, we have P∗N > (θB + D2) /2 >

D2/2. By the definitions of D1 and D2, we further have D2/2 = [(1 − E − F)rD + F] /2 >[
(1 − E − F)qrD + F

]
/2 = (D1 + F)/2, which is in turn greater than D1, provided F > D1.

Again, this contradicts the presumption P∗N ≤ D1. We summarize these results in Lemma 1.

13



Lemma 1. An equilibrium asset price cannot be less than or equal to D2. And an equilibrium

asset price cannot be greater than or equal to D1 either, provided F > D1.

3.2 Threshold equilibrium for bank run games

We solve the model by backward induction, and start with the subgame of bank runs. We

show that for a given price PN ∈ (D1,D2) the bank run game has a unique threshold equilibrium

characterized by a critical cash flow θ̂ (PN). A successful bank run happens if and only if the

bank’s cash flow is lower than θ̂ (PN).

To solve for the optimal strategy of creditors, we first derive their payoffs for action “wait”

and “withdraw” as functions of the number of other creditors who withdraw from the bank.

Denote by L ∈ [0, 1] the fraction of creditors who withdraw from the bank at t = 1. A bank that

faces a total withdrawal of LD1 can meet the demand for liquidity with a partial liquidation by

selling a fraction f of its assets.15

f =
LD1

PN
< 1 (4)

After liquidating a fraction f of its assets, the bank will fail at t = 2 if and only if the value of

its remaining assets (1 − f )θ is lower than its remaining liabilities F + (1 − L)(1 − E − F)rD.

That is,

(1 − f )θ ≤ F + (1 − L)(1 − E − F)rD. (5)

Thus, a bank will fail at t = 2 if and only if the fraction of creditors’ withdrawal exceeds a

threshold Lc.

L ≥
PN[θ − F − (1 − E − F)rD)]

(qθ − PN)(1 − E − F)rD
=

PN(θ − D2)
[θ − PN/q]D1

≡ Lc. (6)

Such a t = 2 failure happens because the partial early liquidation incurs a cost of fire sale.

When a sufficiently large number of creditors withdraw and the bank is forced to liquidate a

significant share of assets prematurely, the remaining assets will not generate sufficient cash

flows to meet the remaining liabilities. The creditors who withdraw early at t = 1 therefore can

impose negative externalities on creditors who choose to wait.

Depending on the amount of early withdrawals L, a creditor’s payoffs of playing withdraw

or stay are tabulated as follows.

15Here f < 1 is guaranteed by PN > D1 and L ≤ 1. Note that three factors contribute to a high fraction of asset
liquidation: (i) a large number of early withdrawals, (ii) low market price P for assets on sale, and (iii) a high level
of wholesale debt.
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L ∈ [0, Lc) L ∈ [Lc, 1]

withdraw qrD qrD

stay rD 0

Note that if a creditor withdraws, his payoff will always be Wrun(L) = qrD. Instead, if he waits,

his payoff depends on the action of other creditors.

Wwait(L) =

 rD L ∈ [0, Lc]

0 L ∈ [Lc, 1]

Defining the difference between the creditor’s payoffs of withdraw and stay as DW(L) ≡

Wrun(L) −Wwait(L), one has

DW(L) =

 −(1 − q)rD L ∈ [0, Lc]

qrD L ∈ [Lc, 1]

The strategic complementarity is clear: when a sufficiently large number of other creditors

choose to withdraw (L > LC), a wholesale creditor receives better payoff from withdrawing

than from waiting. In fact, when there is complete information on θ, the bank run game has two

equilibria in which either all creditors withdraw or all creditors wait. We refine the multiple

equilibria using the technique of global games.

The analysis follows a standard global games approach. We give here the outline of the

proof, and interested readers can refer to Appendix A for full details. First, we establish the

existence of a lower dominance region [θs, θ
L], where it is a dominant strategy for all wholesale

creditors to withdraw early, independently of the private signal that they receive. Similarly, we

show there exists an upper dominance region [θU(PN), θ], where it is a dominant strategy for all

creditors to wait.16 For the intermediate range θL < θ < θU(PN), a creditor’s payoff depends on

the actions of other creditors. So, as a second step, we characterize a creditor i’s ex-post belief

about the other creditors’ actions, conditional on his private signal xi = θ + εi. The belief is a

conditional distribution of L. The creditor then chooses his optimal action based on the ex-post

belief and payoff function DW(L). Finally, for the limiting case where the noise of the signal

approaches zero, we obtain a unique threshold

θ̂(PN) =
D2 − D1

1 − qD1/PN
(7)

16One can derive the upper and lower bounds explicitly and show that θL = D2 and θU(PN) = F
1−D1/PN

.
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such that a successful bank run will happen if and only if the bank’s cash flow θ < θ̂(PN). The

results are summarized in Proposition 1.

Proposition 1. For a secondary market asset price PN ∈ (D1,D2), the bank run game has a

unique threshold equilibrium: a successful run occurs to a bank if the bank’s cash flow falls

below a critical level θ̂(PN) = D2−D1
1−qD1/PN

.

Proof. See Appendix A. �

Expression (7) establishes a one-to-one correspondence between the asset price PN and the

critical cash flow θ̂(PN). Note that the critical cash flow θ̂(PN) is decreasing in PN . A lower

asset price makes successful bank runs more likely.

3.3 Asset market equilibrium

The uninformed asset buyers observe neither θ nor State s, but they can form rational beliefs

about the quality of asset on sale. First of all, they anticipate the threshold equilibrium for

the bank run game to be characterized by θ̂(PN). Therefore, when N bank runs happen, the

asset buyers form a rational belief that only those assets of quality θ < θ̂(PN) will be on sale.

Second, the asset buyers also update their beliefs about State s using Bayes’ rule. We denote

by ωG
N

Ä
θ̂(PN)

ä
the buyers’ posterior belief that s = G when the observed number of bank runs

equals N, and by ωB
N

Ä
θ̂(PN)

ä
the posterior belief for s = B. It should be emphasized that the

posterior beliefs depend on buyers’ offered price PN .

Note that two factors can contribute to asset fire sales. First, conditional on a bank run

having happened, the cash flow of the bank must be lower than θ̂(PN). The buyers face an

adversely selected asset pool in the sense that only those banks with low cash flow will be forced

into asset sales. Second, any observed bank runs also indicate that s = B is more likely. This

further reduces the expected quality of assets on sale, which in turn reduces buyers’ willingness

to pay.

When the asset market is perfectly competitive, an equilibrium asset price must satisfy two

conditions. First, based on their rational expectations about θ and s, the buyers should make

zero expected profit by purchasing bank assets at the posted price. In other words, when there

are N bank runs, an equilibrium asset price P∗N equals the expected asset quality.

P∗N = E
î
θ|θ < θ̂(P∗N)

ó
= ωG

N

Ä
θ̂(P∗N)

ä θG + θ̂(P∗N)
2

+ ωB
N

Ä
θ̂(P∗N)

ä θB + θ̂(P∗N)
2

(8)
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Second, a buyer should not be able to make any profitable deviation by unilaterally bidding a

higher price. Therefore, their expected net payoff, E
î
θ|θ < θ̂(PN),N

ó
−PN , should not increase

in PN .

The equilibrium has a fixed-point representation: P∗N should be a fixed point for function

E
î
θ|θ < θ̂(PN),N

ó
. We show that for each N ∈ {1, 2}, the fixed-point equilibrium exists and is

unique. We also verify that the equilibrium is stable in the sense that a buyer cannot profitably

deviate by unilaterally bidding a higher price.

3.4 A baseline model

The feedback between a bank run and an asset fire sale can be examined without different

aggregate states. Therefore, to illustrate the main intuition, we analyze a baseline case of our

model with θB = θG = θ. In this case, buyers do not update their beliefs about State s, so

their posted price scheme will consist of only one unified price P. For this baseline model, we

denote market equilibrium by {θe, Pe}, and obtain closed-form solutions.

As discussed, intelligent asset buyers can solve the subgame of bank runs and anticipate

only those assets of quality θ < θ̂(P) to be on sale. On the other hand, when the asset market

is in a competitive equilibrium, asset buyers who purchase banks’ assets at the posted price

should break even in expectation. Given their belief θ ∼ U
Ä
θ, θ̂(P)

ä
, a candidate equilibrium

price Pe must satisfy the following zero-profit condition:

Pe =
θ̂(Pe) + θ

2
. (9)

With θ̂(P) derived in equation (7), we can write the condition explicitly:

Pe =
1
2

Ç
D2 − D1

1 − qD1/Pe
+ θ

å
. (10)

Equation (10) has one and only one root in interval (D1,D2). We obtain the following closed-

form solution for the equilibrium asset price Pe.17

Pe =
(D2 − D1) + 2qD1 + θ +

»
[(D2 − D1) + 2qD1 + θ]2 − 8qD1θ

4
(11)

17Details can be found in Appendix B.1.
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For Pe to be an equilibrium, asset buyers should not have a profitable deviation by unilater-

ally bidding a higher price than Pe. That is, a buyer’s expected payoff, E[θ|θ < θ̂] − P, should

not increase in P. In the baseline model, the asset buyers’ expected payoff takes the form

π(P) =
1
2

Ç
D2 − D1

1 − qD1/P
+ θ

å
− P.

For P > D1, the expected payoff monotonically decreases in P.

dπ(P)
dP

= −
qD1(D2 − D1)
2(1 − q

P D1)2P2 − 1 < 0

From (10), we know that the equilibrium asset price is such that π(Pe) = 0, so an asset buyer

will earn negative profit if unilaterally bidding a higher price P > Pe. Intuitively, by bidding a

higher price P, a buyer decreases her expected payoff in two ways. First, a higher bid increases

the cost for acquiring a piece of asset, and directly reduces her payoff. Second, a higher price

P also alleviates the bank run risk, making fewer banks sell for liquidity reasons. As a result,

the buyer faces a pool of assets with deteriorating quality where more banks are selling assets

because of fundamental insolvency. This again reduces her expected payoff.

Having solved Pe, we can obtain the corresponding equilibrium critical cash flow θe ≡ θ̂(Pe)

from expression (9). One can also verify that θe ∈ (θL, θU).

θe =
(D2 − D1) + 2qD1 − θ +

»
[(D2 − D1) + 2qD1 − θ]2 + 4(D2 − D1)θ

2
(12)

The market equilibrium {θe, Pe} reflects asymmetric information on asset qualities. By of-

fering Pe, an uninformed buyer makes a loss when the bank is insolvent, and a profit when

the bank is only illiquid. Furthermore, as a lower θ aggravates the information asymmetry, it

reduces the buyers’ willingness to pay, and makes banks more likely to be illiquid. Mathemat-

ically, we have θe decreasing in θ.

Figure 3 illustrates the equilibrium funding liquidity risk. A bank with θ ∈ (D2, θe] may not

fail and can fully repay its debt obligations if no bank run happens, yet it will fail because of

premature asset liquidation caused by the run of its wholesale creditors.

Proposition 2. The baseline model has an unique equilibrium, with equilibrium asset price Pe

and equilibrium critical cash flow θe specified in (11) and (12) respectively. A bank with cash
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Figure 2: The unique equilibrium of the baseline model

insolvent

θ

solvent but illiquid

D2 θe

super-solvent

θU

flow θ ∈ (D2, θe) is solvent but illiquid: it will fail because of a wholesale debt run, even though

its assets can generate a cash flow greater than its liabilities D2.

Proof. See Appendix B.1. �

3.5 Application I: bank capital and bank run risk

It is conventional wisdom that capital helps reduces bank run risk. An application of the

current framework, however, shows that the relationship is more subtle. We show that once

asset prices are endogenous, capital also contributes to bank runs via stressed asset prices.

We model an increase of bank capital in its most simplistic form. We assume that a bank

maintains its unit portfolio size, increasing its equity from E to E + ∆, and at the same time

decreasing its retail deposits from F to F − ∆. In other words, an increase in capital reduces

D2 to D2 − ∆ but does not affect D1. We then examine how increasing bank capital affects the

risk of bank runs. To measure bank run risks, we follow Morris and Shin (2009) and define the

illiquidity risk as IL ≡ θ̂(P) − D2, with IL standing for illiquidity.18

Under exogenous asset prices, a natural corollary of Proposition 1 is that a higher capital

always reduces funding liquidity risks, because the market value of capital serves as an extra

buffer against fire-sale losses. The value of wholesale debt is better protected and wholesale

creditors have less incentive to run, a channel that we call “buffer effect”. Recall that θ̂(P) =

D2−D1
1− q

P D1
, we can write IL explicitly as

IL =
D2 − D1

1 − q
P D1

− D2. (13)

18Strictly speaking, the illiquidity risk should be measured as the probability Prob(D2 < θ < θ̂(P)) = θ̂(P)−D2

θ−θ
.

We drop the the denominator because it is a constant and does not affect comparative statistics.
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With price P exogenous and not a function of ∆, it is straightforward to verify that increasing

bank capital unambiguously reduces illiquidity.

∂IL
∂∆

= −
qD1

P − qD1
< 0 (14)

With endogenous asset prices, the situation is more complicated. Once investors rationally

update their beliefs about a bank’s asset qualities, a higher capital level also contributes to

bank runs by reducing endogenous fire-sale prices. The intuition is as follows. In terms of

inferring the realization of θ, a bank run presents more negative news when it happens to a

well-capitalized bank than when it happens to a poorly capitalized bank. Because a well-

capitalized bank is able to sustain large losses, the fundamentals of the bank must be unusually

poor for a run to happen. With such pessimistic inference about θ, buyers’ willingness to pay

for the bank’s assets decreases with the observed capital level. Therefore, a change in bank

capital affects illiquidity not only via D2 but also via the endogenous asset price Pe.

∂IL
∂∆

=
∂IL
∂D2

∂D2

∂∆
+
∂IL
∂Pe

∂Pe

∂∆
(15)

The first term captures the traditional “buffer effect” as in the case where the asset price is

exogenous. The second term captures a new channel that we want to emphasize: increasing

capital also affects banks’ funding liquidity risk via endogenous asset prices.

To see that higher capital leads to lower secondary market asset prices, one can simply take

the first order derivative of the closed-form solution of Pe, which gives

∂Pe

∂∆
= −

1
4
−

1
4

D1 + D2 + θ
√

(D1 + D2 + θ)2 − 8D1θ
< 0.

Increasing capital decreases asset buyers’ willingness to pay for a bank’s assets on sale, which

in turn makes creditors panic and bank runs more likely. And this is captured by

∂IL
∂Pe

∂Pe

∂∆
> 0.

Hence, capital can contribute to funding liquidity risk by reducing endogenous asset prices, a

mechanism we dub the “inference effect”. Comparing expression (14) with (15), it should be

clear that with endogenous asset prices and the “inference effect”, capital is less able to contain
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bank run risks as compared to the case where asset price is exogenous. Buyers’ rational beliefs

limit the role of capital in containing funding liquidity risk.

The overall impact of capital on funding liquidity risk depends on the relative strength of

the “buffer effect” and the “inference effect”. Using the closed form solution of Pe and θe, one

can write the overall impact of an increase in capital explicitly.

∂IL
∂∆

= −
qD1

Pe − qD1
+

q(D2 − D1)D1

4(Pe − qD1)2

ñ
1
4

+
D1 + D2 + θ

4
√

(D1 + D2 + θ)2 − 8D1θ

ô
(16)

It can be shown that in an extreme case where θ = 0, ∂IL/∂∆ = 0 and increasing capital cannot

reduce funding liquidity risk at all. Intuitively, a lower θ reduces the expected quality of assets

on sale, and therefore reduces buyers’ willingness to pay. That is,

∂

∂θ

(
∂Pe

∂∆

)
> 0.

The price drop is most pronounced when θ = 0. In that case, the “inference effect” reaches its

maximum and completely offsets the “buffer effect” of capital. We summarize the results in the

following proposition.

Proposition 3. In equilibrium, higher bank capital leads to a lower fire-sale asset price. Com-

pared to the case where the price is exogenous, capital is less able to reduce the risk of illiq-

uidity. And in the extreme case where θ = 0, higher capital does not reduce bank illiquidity at

all.

Proof. See Appendix B.2 �

The result suggests that the design of prudential regulations has to take into account the

responses of market participants. Compared to the situation where regulations are lax, market

participants’ interpretation of the same piece of negative news can be more pessimistic un-

der stringent regulations. In this case, the effectiveness of stringent prudential regulations is

reduced, or even completely eliminated.

4 Self-fulfilling bank runs and financial contagion

In this section, we extend the baseline model to include two banks and two states. Asset

buyers will be able to update their beliefs about State s based on different numbers of bank runs.
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They perceive s = B to be more likely when more bank runs are observed. In the absence of

commitment power, the equilibrium prices that buyers offer must reflect their posterior beliefs,

and therefore vary with the number of runs. We characterize market equilibrium with a single

bank run and that with two bank runs, respectively. We show that for a given N ∈ {1, 2}, there

exists a unique market equilibrium characterized by {P∗N , θ
∗
N} (section 4.1 and 4.2). We further

establish that financial contagion can arise as a multiple-equilibria phenomenon, highlighting

how pessmistic beliefs can drive financial instability (section 4.3). Finally, we discuss how

an asset purchase program committed by a regulator can improve financial stability over the

market equilibria (section 4.4).

4.1 Market equilibrium with a single bank run

We start with characterizing the equilibrium with a single bank run. For a given asset price

P1 that corresponds to the single-bank-run outcome, the bank run game has a unique threshold

equilibrium characterized by θ̂(P1). So asset buyers know that a bank run happens if and only

if the bank’s cash flow is lower than θ̂(P1), and update their beliefs about the aggregate state

according to Bayes’ rule. Recall that ωs
1

Ä
θ̂(P1)

ä
denotes buyers’ posterior belief for State s

when they observe a single bank run.

ωB
1

Ä
θ̂(P1)

ä
≡ Prob(s = B|N = 1) =

Ä
θ̂(P1) − θB

ä Ä
θ − θ̂(P1)

äÄ
θ̂(P1) − θB

ä Ä
θ − θ̂(P1)

ä
+
Ä
θ̂(P1) − θG

ä Ä
θ − θ̂(P1)

ä
=

Ä
θ̂(P1) − θB

äÄ
θ̂(P1) − θB

ä
+
Ä
θ̂(P1) − θG

ä
ωG

1

Ä
θ̂(P1)

ä
≡ Prob(s = G|N = 1) =

Ä
θ̂(P1) − θG

ä Ä
θ − θ̂(P1)

äÄ
θ̂(P1) − θB

ä Ä
θ − θ̂(P1)

ä
+
Ä
θ̂(P1) − θG

ä Ä
θ − θ̂(P1)

ä
=

Ä
θ̂(P1) − θG

äÄ
θ̂(P1) − θB

ä
+
Ä
θ̂(P1) − θG

ä
When the competitive asset market is in a rational expectations equilibrium, based on their

posterior beliefs, asset buyers should expect to break even when purchasing bank assets for

price P∗1. Their ex-post zero-profit condition (8) can now be written as the following.

P∗1 = E
î
θ|θ < θ̂(P∗1),N = 1

ó
= ωB

1

Ä
θ̂(P∗1)

ä θB + θ̂(P∗1)
2

+ ωG
1

Ä
θ̂(P∗1)

ä θG + θ̂(P∗1)
2

(17)
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A candidate equilibrium price P∗1 should be a fixed point of function E
î
θ|θ < θ̂(P∗1),N = 1

ó
.

With θ∗1 ≡ θ̂(P
∗
1), we can re-write the zero-profit condition (17) as a function of θ∗1.19

F1(θ∗1) ≡ ωB
1 (θ∗1)

θB + θ∗1
2

+ ωG
1 (θ∗1)

θG + θ∗1
2

−
qD1θ

∗
1

θ∗1 − (D2 − D1)
= 0 (18)

The equation simply states that asset buyers’ net payoffs should be zero in expectation. And

finding a fixed point P∗1 is equivalent to finding a solution for equation (18).

For P∗1 to be an equilibrium, an asset buyer must not profit by unilaterally raising her bid

above P∗1. In other words, function F1 should not increase in P1 (or equivalently, not decrease in

θ1). Such monotonicity always holds, and the intuition is as follows. First of all, as discussed in

section 3.3, increasing price rises the cost of acquiring bank assets and leads to an deteriorating

quality in the asset pool. Second, when P1 increases, the risk of a bank run is mitigated, and

a bank selling its assets is more likely to be fundamentally insolvent rather than facing a pure

liquidity problem. For a given number of bank runs observed, this suggests that s = B is more

likely, i.e., ∂ωB
1

Ä
θ̂(P1)

ä
/∂P1 > 0. This further reduces the buyer’s expected payoff.

Lemma 2. F1(θ) monotonically increases in θ1, meaning that given a single bank run is ob-

served, a buyer’s expected payoff monotonically decreases in her bid P1.

Proof. See Appendix B.3. �

With extra complications introduced by the posterior beliefs on s, we can no longer obtain

closed-form solutions for P∗1 and θ∗1. Instead, we prove that there exists a θ∗1 ∈ (θL, θU(P∗1)) that

satisfies equation (18), and a corresponding P∗1 ∈ (D1,D2) that satisfies equation (17). The proof

is based on the continuity of F1(θ1). In particular, we show that F1(θ1) is negative at θL and

positive at θU(P1). Furthermore, given the monotonicity of F1(θ), once an equilibrium exists, it

is also unique. As a result, the market equilibrium with one bank run can be characterized by a

unique pair {P∗1, θ
∗
1}. The result is summarized in the proposition below.

Proposition 4. There exist a unique equilibrium critical cash flow θ∗1 ∈ (θL, θU(P∗1)) and a

corresponding unique equilibrium asset price P∗1 ∈ (D1,D2) associated with one bank run. A

bank with cash flow θ ∈ (D2, θ
∗
1] is solvent but illiquid.

Proof. See Appendix B.4. �

19Here we have used the fact that θ∗1 ≡ θ̂(P
∗
1) = (D2−D1)

1−qD1/P∗1
so that P∗1 =

qD1θ
∗
1

θ∗1−(D2−D1) .
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4.2 Market equilibrium with two bank runs

Following the same approach as in the last section, we now characterize the equilibrium

with two bank runs. For a given asset price P2 that corresponds to a two-bank-run outcome, a

bank will fail because of a run if and only if its cash flow θ < θ̂(P2). Again, we formulate asset

buyers’ posterior beliefs about State s according to Bayes’ rule.

ωB
2

Ä
θ̂(P2)

ä
≡ Prob(s = B|N = 2) =

Ä
θ̂(P2) − θB

ä2Ä
θ̂(P2) − θB

ä2
+
Ä
θ̂(P2) − θG

ä2

ωG
2

Ä
θ̂(P2)

ä
≡ Prob(s = G|N = 2) =

Ä
θ̂(P2) − θG

ä2Ä
θ̂(P2) − θB

ä2
+
Ä
θ̂(P2) − θG

ä2 .

Based on the posterior beliefs, the asset buyers’ break-even condition can be written as follows.

P∗2 = E
î
θ|θ < θ̂(P∗2),N = 2

ó
= ωB

2

Ä
θ̂(P∗2)

ä θB + θ̂(P∗2)
2

+ ωG
2

Ä
θ̂(P∗2)

ä θG + θ̂(P∗2)
2

(19)

And the equilibrium threshold θ∗2 ≡ θ̂(P
∗
2) makes the following equation F2(θ∗2) = 0.

F2(θ∗2) ≡ ωB
2 (θ∗2)

θB + θ∗2
2

+ ωG
2 (θ∗2)

θG + θ∗2
2

−
qD1θ

∗
2

θ∗2 − (D2 − D1)
= 0 (20)

Lemma 3 shows that buyers’ expected payoff monotonically decreases in P2, so that they have

no profitable deviation. Thus, any solution to equation (20) is indeed a market equilibrium.

Lemma 3. F2(θ) monotonically increases in θ, meaning that given two bank runs are observed,

a buyer’s expected payoff monotonically decreases in her bid P.

Proof. See Appendix B.5. �

To prove the existence of and uniqueness of the equilibrium, we again use the monotonicity

and continuity of function F2(θ2). We show that F2(θ2) is negative at θL and positive at θU , so

that the market equilibrium with one bank run can be characterized by a unique pair {P∗2, θ
∗
2}.

The result is summarized in Proposition 5.

Proposition 5. There exist a unique equilibrium critical cash flow θ∗2 ∈ (θL, θU(P∗2)) and a

corresponding unique equilibrium asset price P∗2 ∈ (D1,D2) associated with two bank runs. A

bank with cash flow θ ∈ (D2, θ
∗
2] is solvent but illiquid.

Proof. See Appendix B.6. �
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4.3 Financial contagion and multiple equilibria

θ∗2 > θ
∗
1 would imply potential contagion. In particular, when a bank’s cash flow lies between

θ∗1 and θ∗2, the bank will face no run if the other bank does not face a run, and will fail in a

wholesale run if the other bank does. We prove with Lemma 4 that θ∗2 > θ∗1 is indeed the case.

Intuitively, the asset buyers form more pessimistic beliefs about State s when they observe

more bank runs. Their willingness to pay for banks’ assets decreases as banks’ expected asset

qualities are lower in State B. This in turn reduces equilibrium asset price and pushes up the

equilibrium critical cash flow that a bank has to meet to survive a run.

Lemma 4. When more runs are observed, the equilibrium market asset price is lower P∗2 < P∗1

and the risk of bank runs is higher θ∗2 > θ
∗
1.

Proof. See Appendix B.7. �

Financial contagion emerges as a multiple-equilibrium phenomenon in the current model.

In fact, when a bank’s cash flow θ ∈ (θ∗1, θ
∗
2) and the other bank’s cash flow θ < θ∗2, the equilib-

rium number of bank runs depends on creditors’ beliefs about each others’ strategies. Only two

threshold strategies can be be rationalized as part of a market equilibrium, i.e., an optimistic

threshold strategy, ‘to run if and only if x < θ∗1’, and a pessimistic threshold strategy, ‘to run if

and only if x < θ∗2’. As a result, we can focus on those two threshold strategies only. We show

that financial contagion can happen purely because of creditors’ pessimistic beliefs.

For the ease of exposition, we label the two banks as Bank i and j, and discuss the following

two cases respectively. (1) Bank i has a cash flow θ ∈ (θ∗1, θ
∗
2) and Bank j has a cash flow

θ < θ∗1.20 And (2) Bank i and j both have cash flows between θ∗1 and θ∗2.

In the first case, the equilibrium number of bank runs can be either 1 or 2, depending on

creditors’ belief about each others’ strategies. With a cash flow θ < θ∗1, Bank j will fail in a run

whether creditors follow the optimistic or pessimistic strategy. Therefore, there will be at least

one bank run in the economy. Whether Bank i will have a run, however, depends on creditors’

beliefs. If creditors believe that a positive mass among them follow the pessimistic strategy,

they will expect a run on Bank i and an asset price P∗2, so that it is optimal to join the run. As a

result, all creditors withdrawing early from Bank i can emerge as an equilibrium. By contrast,

if all creditors believe that none of them follow the pessimistic strategy, they would expect the

20The symmetric case where Bank i has a cash flow θ < θ∗1, and Bank j has θ ∈ (θ∗1, θ
∗
2) can be analyzed with

the same reasoning.
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asset price to be P∗1, and only Bank j to fail, which justifies their optimistic belief/strategy in

the first place.

In the second case, the equilibrium number of bank runs can be either 0 or 2, depending

again on creditors’ beliefs. If all creditors believe that none of them follow the pessimistic

strategy, no run will happen, because both banks’ cash flows are higher than θ∗1. Therefore,

N = 0 can be an equilibrium. On contrast, if a creditor believes that a positive mass among

them follow the pessimistic strategy, he will expect two bank runs and assets sold for price P∗2,

so that it is optimal for him to join the run. Therefore, N = 0 can emerge as an equilibrium. The

creditor’s belief must be that a positive mass of creditors will run both banks. This is because

if the pessimistic creditors are present in one bank, then those creditors’ strategy cannot be

rationalized. Therfore, N = 1 cannot be an equilibrium.

In sum, multiple equilibria can emerge when one bank’s cash flow is in [θ∗1, θ
∗
2] and the other

bank’s cash flow is below θ∗2. The contagion is self-fulfilling and can be fuelled completely

by creditors’ beliefs. In Figure 4, we plot the possible equilibrium outcomes for different

combinations of bank cash flows, and summarize the results in Proposition 6.

Figure 3: Equilibrium of the fully-fledged model

Bank Aθ∗ θ∗∗
θ

Bank B

θ∗

θ∗∗

D2

θ

Unique
equilibrium.

Both
banks fail.

Multiple equilibria.
Financial contagion.

Unique equilibrium.
Bank B fails.

Unique
equilibrium.

Bank A
fails.

Unique
equilibrium.

Neither
bank fails.

Proposition 6. When one bank’s cash flow belongs to [θ∗1, θ
∗
2] and the other bank’s cash flow is

lower than θ∗2, multiple market equilibria exist, and financial contagion can happen because of

creditors’ pessimistic beliefs.

26



4.4 Application II: asset purchase program

We show in this section that a regulator with commitment power can promote financial

stability even if he is not better informed than the asset buyers. The welfare-improving policy

intervention that we propose resembles asset purchase programs such as Term Asset-Backed

Securities Loan Facility (TALF).

We consider the following policy intervention: the regulator makes a promise to purchase

bank assets at a unified price PA in case any bank run happens. In particular, the unified price PA

does not depend on the number of bank runs in the economy. The regulator is assumed to have

full commitment power and will not revoke his offer after having observed the actual number

of bank runs. Under the policy intervention, the model has the following revised timeline.

Figure 4: Timing of the asset purchase program

t = 0 t = 0.5 t = 1 t = 2

Banks are established,
with their portfolios
and liability structures
as given.

The regulator makes
a promises to buy
assets at a unified
price PA, in case any
bank run happens.

1. s and θ are realized.
2. Asset buyers post a price
scheme.
3. For each bank that they
lend to, creditors receive
private noisy signals about
the bank’s cash flow θ, and
decide to run or not.
4. Assets are sold to the
party that offers the highest
price.

1. Returns
are real-
ized.
2. Remain-
ing obli-
gations are
settled

The regulator is risk-neutral, and is subject to an ex-ante budget constraint: he should not

make any loss in expectation. To maximise social welfare, he will choose an optimal price P∗A

so that he only breaks even. This is because any lower price that leads to a positive expected

profit will come at a cost of letting more solvent banks fail in runs.

The regulator is different from the typical asset buyers in the market because he holds full

commitment power. In particular, he is not required to break even for each observed number

of bank runs, but only to break even ex ante. The commitment power allows the regulator to

disregard new information such as the number of bank runs, and can therefore avoid the vicious

cycle fuelled by pessimistic belief updating.

We now derive the ex-ante break-even price P∗A. As a first step, we solve for price P∗A, under

the assumption that banks will sell their assets to the regulator instead of to the asset buyers
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in the secondary market. When wholesale creditors expect bank assets to be sold at price PA,

we know from Section 3.3 that the critical cash flow of the bank run game is θ̂(PA). So the

regulator understands that only those assets with θ < θ̂(PA) will be on sale, with θ̂(PA) again

defined by expression (7).

θ̂(PA) =
D2 − D1

1 − qD1/PA
(21)

As the regulator commits to price PA before observing any number of bank runs, he holds the

prior belief Prob(s = G) = Prob(s = B) = 1/2. From this ex-ante perspective, the regulator’s

break-even condition can be written as follows.

P∗A =
1
2
θB + θ̂(P∗A)

2
+

1
2
θG + θ̂(P∗A)

2
(22)

Using expression (21), we can rewrite the ex-ante break-even condition (8) into a quadratic

function of P∗A, which has the following root between D1 and D2.

P∗A =
[2(D2−D1)+4qD1+(θB+θG)]+

√
[2(D2−D1)+4qD1+(θB+θG)]2−16qD1(θB+θG)

8 (23)

Having obtained P∗A, we can derive the corresponding θ̂(P∗A) using equation (21). Following the

same procedure as in the proof of Proposition 4, we can prove that θ̂(P∗A) ∈
(
θL, θU(P∗A)

)
, so that

the policy intervention cannot completely eliminate inefficient bank runs.

Lemma 5. Suppose that facing runs, banks can sell their assets at a unified price committed

by the regulator. The regulator can break even ex ante by offering price P∗A as in (23). And the

bank run game has a threshold equilibrium where a run happens if and only if θ < θ̂(P∗A).

Proof. See Appendix B.8. �

Now one can verify that P∗A is higher than what market offers (i.e., P∗A > P∗1 > P∗2), so

that banks will indeed sell their assets to the regulator. As θ̂(P) decreases with P, the policy

intervention improves financial stability as compared to the market equilibria. In particular, the

asset purchase committed by the regulator reduces (though does not eliminate) the risk of bank

runs, and completely rules out financial contagion. The result is summarised in Proposition 7.

Proposition 7. The regulator’s ex-ante break-even price P∗A is higher than the prices in market

equilibria, so that banks will sell their assets to the regulator when they face runs. With P∗A >
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P∗1 > P∗2 and θ̂(P∗A) < θ̂(P∗1) < θ̂(P∗2) , the regulator can reduce bank run risks and eliminate

financial contagion.

Proof. See Appendix B.9. �

With his commitment power, the regulator can disregard the outcome of bank run games

and stick to a unified asset price. The commitment power allows the regulator to avoid the

vicious cycle between bank runs and fire sales that is fuelled by pessimistic beliefs in market.

As the regulator only needs to break even ex ante given his prior belief about State s, he can

use the profit from State G to compensate the loss in State B.

The typical buyers in market, on the other hand, are unable to do so. Without commitment

power, they must not make expected loss given any realized number of bank runs. In other

words, they are constrained by ex-post break-even conditions. In fact, if an asset buyer offers

the same price P∗A, she will revoke the offer when a bank run actually happens, because in that

case she will form a posterior belief that s = B is more likely and will no longer consider herself

breaking even by purchasing bank assets at P∗A. To break even from this ex-post perspective,

the asset buyer has to lower her offered price, so as to decrease the loss from purchasing assets

with θ ∈
[
θs, P∗N

)
, and to increase the profit from purchasing assets with θ ∈

î
P∗N , θ̂(P

∗
N)
ä
. The

lack of commitment power therefore leads to lower asset prices, which in turn result in more

bank runs, and justify the pessimistic beliefs in the first place.

This result naturally relates to Lender of Last Resort (LOLR) policies. The effectiveness

of such policies has long been debated, because a lender of last resort may not be able to

tell whether a troubled bank is insolvent or illiquid. As a result, blinded intervention will

compromise market discipline, whereas taking no action runs the risk of letting solvent banks

fail. The current model, however, shows that interventions such as asset purchase programs can

still improve financial stability without demanding information on individual banks’ financial

healthiness. Even if such interventions is not perfect—banks with θ ∈ (D2, θ̂(PA)) still fail

because of illiquidity, the dilemma is not as stark as one may think.

29



5 Further policy discussion

The model is sufficiently rich for other policy analysis, and we present here one more policy

implication for regulatory disclosure.21 We focus on a situation where a regulator has superior

information about aggregate state s and can credibly disclose the information to the market. We

analyze the cost and benefit of such regulatory disclosure, and compare it with asset purchase

programs in terms of promoting financial stability.

5.1 Trade-offs for regulatory disclosure

To concentrate on the effects of disclosure, we consider a simplistic case where the reg-

ulator observes State s perfectly. Once the regulator decides to disclose the information, the

realization of State s will be released before market trading. We also assume that the regulator

can commit to truthful revelations by legislation. The information set of asset buyers changes

correspondingly. Instead of updating beliefs about State s based on the number of bank runs,

buyers now learn the state with certainty. Therefore, asset prices can be conditional on the true

state that the regulator discloses.

The regulatory disclosure eliminates alternative beliefs as a source of multiple equilibria.

Instead of two rational expectations equilibria depending on buyers’ beliefs, there will be a

unique equilibrium for each disclosed (realized) state. For brevity, we spare the derivation of

market equilibria, and denote by
{
θ∗G, P

∗
G
}

and
{
θ∗B, P

∗
B
}

the equilibrium critical cash flows and

asset prices for State G and B respectively. Lemma 6 demonstrates the effect of regulatory

disclosure on banks’ illiquidity.

Lemma 6. When the aggregate State s is disclosed to market participants, there exists a unique

market equilibrium
{
θ∗s , P

∗
s
}

associated with each realized State s ∈ {G, B}. In State s, a bank

with cash flow θ ∈ (D2, θ
∗
s] will fail because of illiquidity. Such regulatory disclosure eliminates

the multiple equilibria caused by the asset buyers’ beliefs about the aggregate state.

Proof. See Appendix B.10. �

Intuitively, we have θ∗B > θ∗2 and θ∗G < θ∗1. Here θ∗B > θ∗2 because even when observing two

bank runs, buyers cannot exclude the possibility of s = G. But to the extent that a regulatory

disclosure s = B is accurate, buyers will offer price according to s = B with certainty. Similarly,
21In reality, examples of the regulatory disclosure include communicating stress testing parameters to the public

or making announcements of the size of assistance programs.
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making a favorable disclosure s = G further reassures market participants and can save banks

from illiquidity. The result is summarized in Proposition 8 and is illustrated by Figure 5.

Proposition 8. With θ∗G < θ∗1 and θ∗B > θ
∗
2, the regulatory disclosure reduces illiquidity if s = G

but increases it if s = B.

Proof. See Appendix B.11. �

Figure 5: Equilibrium under regulatory disclosure

θ D2 θ∗G θ∗1 θ∗2 θ∗B θU

The disclosed information, when favorable, boosts asset prices and saves banks with θ ∈

(θ∗G, θ
∗
1] from illiquidity. Acknowledging a bad state, on the other hand, exacerbates liquidity

problems. That is, a solvent bank is more likely to suffer from illiquidity when market par-

ticipants are aware of the downside risk, and banks with θ ∈ (θ∗2, θ
∗
B] will fail because of runs.

Therefore, in determining whether to disclose information to the public, regulators face a trade-

off: if the state is good, the reassuring disclosure can save banks from illiquidity; but if the state

is unfavorable, acknowledging a crisis will create even more runs by pushing asset prices fur-

ther down. Arguably, when the social cost of bank failure is greater in State B, it is suboptimal

for regulators to commit to disclosing information.

5.2 Regulatory disclosure vs. Asset purchase

Now we run a horse race between different policy interventions, examining whether regu-

latory disclosure can outperform an asset purchase program as modelled in section 4.4. The

regulator is assumed to choose between the two policy interventions before State s realizes.

We show that an asset purchase program, which does not require superior information on the

aggregate state, can actually achieve a higher level of financial stability.

Note first that asset purchase programs and regulatory disclosure are mutually exclusive.

Once it has been credibly communicated that s = G, the equilibrium asset price will be P∗G—

higher than the break-even price P∗A in asset purchase programs. The reason is again that asset

buyers are most optimistic when they learn the state is good with certainty. Suppose that an
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asset purchase program and regulatory disclosure coexist, the regulator will not acquire any

assets in the good state unless his announced price is higher than P∗G. Such a price, however,

implies making losses from an ex-ante perspective.

We then evaluate the regulator’s policy choice between asset purchase programs and regu-

latory disclosure. For simplicity, we concentrate on the social cost of bank failures. We denote

the social cost by C for each failed bank and assume it is independent of the number of bank

failures and State s. The regulator aims to choose a policy intervention that minimizes the

expected social cost. We denote by S CAP and S CRD the expected social costs associated with

asset purchase programs and the regulatory disclosure, respectively. Recall from section 4.4

that θ̂(P∗A) is the critical cash flow for the regulator’s ex-ante break-even price P∗A. S CAP can be

formulated as

S CAP =
1
2
·
θ̂(P∗A) − θB

θ − θB
C +

1
2
·
θ̂(P∗A) − θG

θ − θG
C. (24)

Whereas the expected social cost associated with regulatory disclosure can be written as

S CRD =
1
2
·
θ̂(P∗B) − θB

θ − θB
C +

1
2
·
θ̂(P∗G) − θG

θ − θG
C. (25)

We show with Corollary 1 that the social cost associated with asset purchase programs is

strictly lower. This result stems from the fact that the critical cash flow θ̂(P) is decreasing and

convex in P. The result suggests that the economy would be better off if the regulator disregards

his superior information about State s, and commits to purchase bank assets at price P∗A.

Corollary 1. The expected social cost due to bank failures is lower under asset purchase pro-

grams than under regulatory disclosure, S CAP < S CRT .

Proof. See Appendix B.12. �

6 Concluding remarks

In this paper, we have investigated the relationship between fire-sales and bank runs. We

have presented a model where asset fire sales and bank runs are driven by the lack of infor-

mation and endogenously determined in a rational expectations equilibrium. We have also ex-

tended the model to incorporate contagion when there is a common risk exposure. We can draw
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several conclusions from our analysis. First, asset fire sales and bank runs are self-fulfilling and

mutually reinforcing: when creditors anticipate low prices for a bank’s assets, a run will be trig-

gered, which generates fire-sales and the corresponding collapse in prices, thus fully justifying

creditors’ strategies. Second, as one bank fails, asset buyers lower their expectations of the

common risk factor and perceive banks’ assets to be less valuable: the declining asset prices

will precipitate contagious runs at all other banks.

The model has derived three policy implications regarding bank capital, asset purchase pro-

grams and regulatory disclosure. First, contrary to the conventional wisdom, we have shown

that bank capital holding can have unintended consequences for funding liquidity, because a run

on a well-capitalized bank signals unusually high risk and exacerbates asset fire sales, which

in turn makes the run more likely. In its extremity, the model predicts that capital cannot re-

duce bank funding liquidity risk at all. Second, we have demonstrated that a regulator can

break down the vicious circle between asset fire sales and bank runs by committing to purchase

banks’ assets at a predetermined price. This contributes to the discussion of asset purchase

programs: by implementing such programs, regulators can promote financial stability and still

break even from ex-ante perspective even with no better information than other market partic-

ipants. Finally, we have shown that regulatory disclosure is a double-edged sword. It saves

banks from illiquidity when the disclosure is favorable. But, it amplifies funding liquidity risk

and financial contagion when the disclosure worsens market beliefs.
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Appendix A Bank run game for D1 < PN < D2

In this section, we solve the creditors’ bank run game for a given secondary market price

PN belongs to the interval (D1,D2).

Appendix A.1 Lower and upper dominance regions

Following the standard procedure of global games, we start with the lower dominance re-

gion denoting as [θ, θL]. Suppose all other creditors stay until t = 2 when the bank’s cash flow

realizes in this region, then the fraction of creditors who withdraw is L = 0. Under this case,

there is no bank run. In this circumstance, a creditor i still withdraws at t = 1 if and only if the

inequality (5) holds for L = 0, that is θ ≤ F + (1 − E − F)rD = D2. The bank’s fundamental

is so poor that the bank still fails at t = 2 even if there is no premature liquidation of its as-

sets. A creditor i who waits will get zero because of the bankruptcy. Instead, he will get qrD if

withdrawing early. Thus, we define θL = D2. In our analysis, the support of noise ε is taken to

be arbitrarily close to zero, so creditors are sure when the bank’s cash flow realizes in [θ,D2).

Thus, a creditor’s dominant strategy is to withdraw at t = 1 to get qrD in this circumstance.

Second, we choose θU(PN) = F
1−D1/PN

given the asset price PN . Then the upper dominance

region is [θU(PN), θ]. Note that we can always have

θ >
F

1 − D1/PN

by assuming θ is sufficiently large to keep the existence of the upper dominance region. Now

suppose all other creditors withdraw early when the bank’s fundamental realizes in the upper

dominance region, then L = 1. Under this case, a successful bank run always occurs irrespec-

tive of the bank’s cash flow. Yet, the bank still survives at t = 2 if the inequality (5) does not

hold, (1 − D1/PN)θ > F. In other words, the bank always survives if its realized cash flow

is sufficiently large θ > F
1−D1/PN

. Again, the creditors’ signals are arbitrarily accurate, they are

sure when the bank’s cash flow realizes in (θU(PN), θ]. A creditor’s dominant strategy is to stay

until t = 2 to avoid the penalty for early withdrawal (rD > qrD).
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Appendix A.2 Beliefs of creditors outside the dominance regions

In this subsection, we characterize creditors’ beliefs when the bank’s cash flow realizes in

the intermediate region (θL, θU(PN)). Now creditors’ actions depend on their beliefs about the

actions of other creditors. The signals regarding to the bank’s realized cash flow form their

beliefs.

To proceed, we first determine the fraction of creditors who withdraw at t = 1 as a function

of a bank’s realized cash flow and the threshold. Formally, when a bank’s cash flow θ realizes

in the region (θL, θU(PN)), a creditor i receives a signal xi = θ + εi, with εi ∼ U(−ε, ε) as the

noise about the realized fundamental. We suppose each creditor acts according to a threshold

strategy and set the threshold signal as x̂, i.e., a creditor i withdraws at t = 1 if xi < x̂, stays

until t = 2 if xi > ŝ. The fraction of creditors who withdraw at t = 1 should be a function of

the realized cash flow θ and the threshold of signals x̂, that is L = L(θ, x̂). This is because the

decision to withdraw or stay depends on both the realization of the cash flow and the strategy

of other players. To achieve model tractability, we follow the classic approach in global games

by assuming that the creditors’ signal about the realized cash flow is sufficiently accurate. The

noise εi is distributed on an arbitrarily small interval, ε → 0. As a result, we can consider

the threshold of signal x̂ approximately to be a threshold of bank’s cash flow θ̂, as x̂ and θ̂ are

arbitrarily close. Then a representative creditor i withdraws at t = 1 if xi < θ̂, stays till t = 2 if

xi > θ̂ and the fraction of early withdrawals is L(θ, θ̂).

Our second step is to determine the functional form of L(θ, θ̂). For a realized θ, we have

three cases: (i) When θ + ε < θ̂, even the highest possible signal is below the threshold θ̂.

According to the definition of threshold strategy, all creditors withdraw at t = 1, and L(θ, θ̂) = 1.

(ii) When θ − ε > θ̂, even the lowest possible signal exceeds the threshold θ̂. Then all creditors

stay till t = 2. (iii) When θ falls into the intermediate range [θ̂−ε, θ̂+ε], the fraction of creditors

who withdraw at t = 1 is determined as

L(θ, θ̂) = Prob(xi < θ̂|θ) = Prob(εi < θ̂ − θ|θ) =
θ̂ − θ − (−ε)

2ε
=
θ̂ − θ + ε

2ε
. (A.26)

A creditor who receives a signal xi holds a posterior belief that the fundamental follows a

uniform distribution on [xi − ε, xi + ε] because the noise εi is uniformly distributed on [−ε, ε].

As the proportion of creditors who withdraw is a function of the fundamental, each creditor

forms a posterior belief about the proportion.
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The third step is to derive those posterior beliefs. To begin with, we show that the distribu-

tion is uniform on [0, 1] for the marginal creditor who happens to observe si = θ̂. Indeed, we

have

Prob
(

L(θ, θ̂) ≤ L̂
∣∣∣xi = θ̂

)
= Prob

(
θ̂ − θ + ε

2ε
≤ L̂

∣∣∣xi = θ̂

)
= Prob

(
θ ≥ θ̂ + ε − 2ε L̂

∣∣∣xi = θ̂
)
.

On the other hand, we know that, conditional on xi = θ̂, the marginal creditor has a posterior

belief that θ is uniformly distributed on [θ̂ − ε, θ̂ + ε], which implies Prob
(

L(θ, θ̂) ≤ L̂
∣∣∣xi

)
=

L̂. Therefore, the marginal creditor holds a posterior belief that the fraction of creditors who

withdraw at t = 1 forms a uniform distribution on [0, 1], that is L(θ, θ̂|xi = θ̂) ∼ U(0, 1).

We then move onto the slightly more complicated cases for the non marginal creditor, xi ,

θ̂. Without loss of generality, we start with the case xi > θ̂. Remember that a creditor who

receives a signal xi holds a posterior belief that the fundamental follows a uniform distribution

on [xi − ε, xi + ε]. Given xi > θ̂, the upper bound of the support is greater than θ̂ + ε. And we

know that when θ > θ̂ + ε, all creditors stay and L = 0. In fact, we can divide the support of θ

into two sections: [xi − ε, θ̂ + ε] and [θ̂ + ε, xi + ε]. As we have discussed, the second section

corresponds to a posterior belief L(θ, θ̂|xi) = 0. Therefore in the eyes of a creditor i who receives

xi > θ̂, there will be a positive probability mass on L = 0. On the other hand, we can show that

the posterior belief of θ continues to be a uniform distribution on [xi − ε, θ̂ + ε] ⊂ [θ̂ − ε, θ̂ + ε].

Since θ is again within the intermediate range [θ̂− ε, θ̂+ ε], the expression of L(θ, θ̂) will follow

expression (A.26), and we can derive the posterior belief on L as follows.

Prob
Ä
L(θ, θ̂) ≤ L̂

∣∣xi

ä
= Prob

(
θ̂ − θ + ε

2ε
≤ L̂

∣∣∣∣xi

)
= Prob(θ ≥ θ̂ + ε − 2ε L̂|xi)

Because the player perceives a uniform distribution of θ on [xi − ε, θ̂+ ε], the probability above

can be calculated as L̂
1−(si−θ̂)/2ε

, and this is a uniform distribution on
[
0, 1 − xi−θ̂

2ε

]
. Notice that the

density function on this interval is 1, thus the probability uniformly allocated on this interval

is 1 − xi−θ̂
2ε , and the probability mass at L(θ, θ̂) = 0 is Prob

Ä
L(θ, θ̂) = 0

ä
= xi−θ̂

2ε . A creditor

who observes xi > θ̂ holds a more optimistic belief that a smaller proportion of creditors will

withdraw (reflected by the positive probability mass on L = 0 where no one withdraws). As

the marginal creditor who observes xi = θ̂ is indifferent between withdrawing or not, the player

who observes xi > θ̂ will prefer to stay. Moreover, the higher the signal si received, the more

optimistic belief a creditor i holds (Prob
Ä
L(θ, θ̂) = 0

ä
= xi−θ̂

2ε increases in xi).
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The case xi < θ̂ follows exactly the same procedure. We can show that from the perspective

of a creditor who observes xi < θ̂, L has a mixed distribution: it is uniformly distributed

on
[
θ̂−xi
2ε , 1

]
with density function 1, and has with a positive probability mass at L(θ, θ̂) = 1.

The probability mass at L = 1 is Prob
Ä
L(θ, θ̂) = 1

ä
= θ̂−xi

2ε , where creditor i believes every

one withdraws. Thus, a creditor who observes xi < θ̂ will be more pessimistic and prefer to

withdraw. Moreover, the lower the signal si received, more pessimistic belief a creditor i holds

(Prob
Ä
L(θ, θ̂) = 1

ä
= θ̂−xi

2ε increases in xi).

Appendix A.3 Threshold Equilibrium

The previous subsections show that upper and lower dominance regions are existent and any

creditor whose signal is higher (lower) than θ̂(PN) is more prone to stay (withdraw). Now we

formally derive the value of this critical cash flow by the indifference condition of the marginal

creditor. Remember that the marginal creditor, observing exactly θ̂, is indifferent between stay

and withdraw. We have derived that his belief is L ∼ U(0, 1) and formulated the difference

DW(L) in Section 3.2. Then the creditor’s indifference condition can be expressed as

∫ 1

0
DW(L)dL = 0,

or ∫ 1

Lc
qrDdL −

∫ Lc

0
(1 − q)rDdL = qrD(1 − Lc) − (1 − q)rDLc = 0.

Recall the definition of Lc, Lc = PN (θ−D2)
(θ−PN/q)D1

. The indifference condition implies a unique critical

cash flow θ̂ for a given asset price PN ∈ (D1,D2).

θ̂(PN) =
D2 − D1

1 − qD1/PN
,

For a given asset price PN ∈ (D1,D2), a run happens to banks with θ < θ̂(PN). Geometrically,

we present the indifference condition in Figure 3.
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Figure 6: Payoff differences and the decision to withdraw

L

DW

L(θ, θ̂(PN))

1
0

Lc

(1 − q)rD

−qrD

Appendix B Proofs to Lemmas and Propositions

Appendix B.1 Proposition 2. Solution to the baseline model

Proof. To solve the equilibrium critical cash flow θe, note that (??) is actually a quadratic

function of θ̂

θ̂2 −
[
(D2 − D1) + 2qD1 − θ

]
θ̂ − (D2 − D1)θ = 0.

Using the quadratic formula, we can obtain two solutions and retain the positive one

θe =
(D2 − D1) + 2qD1 − θ +

»
[(D2 − D1) + 2qD1 − θ]2 + 4(D2 − D1)θ

2
.

The equilibrium asset price Pe can be obtained by solving (10) or directly from the zero profit

condition Pe =
θe+θ

2 . We have

Pe =
(D2 − D1) + 2qD1 + θ +

»
[(D2 − D1) + 2qD1 + θ]2 − 8qD1θ

4
,

Note that [(D2 − D1) + 2qD1 − θ]2 + 4(D2 − D1)θ = [(D2 − D1) + 2qD1 + θ]2 − 8qD1θ.

To prove θe > D2 and Pe ∈ (D1,D2), we let q be sufficiently close to 1 to simplify the

calculation. Note that this assumption is innocuous as q is the penalty for early withdrawal, in
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reality such penalty is small for demandable debts, i.e., q→ 1. So θe and Pe turn into

θe =
(D1 + D2 − θ) +

√
[(D1 + D2 − θ)2 + 4Fθ
2

, Pe =
(D1 + D2 + θ) +

»
(D1 + D2 + θ)2 − 8qD1θ

4
.

With the analytical solution, it can be verified easily that D1 < Pe < D2 and θe > D2. To

prove θe < θ
U(Pe), note that θe = D2−D1

1−qD1/Pe
and θU(Pe) = F

1−D1/Pe
. With Pe > D1, θU(Pe) is finite,

thus can be assumed to be less than θ. By the definition of D2 and D1, we have θe = θU(Pe)

when q→ 1. Then consider the following derivative

limq→1−
d

dq

î
θU(Pe) − θe

ó
=limq→1−

d
dq

 F
1 − q(1−E−F)rD

Pe

−
F + (1 − q)(1 − E − F)rD

1 − q2(1−E−F)rD
Pe


=

Pe − D2

Pe
.

Thus, there exists an interval for q such that when q ∈ (1−ε, 1), d
dq

(
θU(Pe) − θe

)
< 0 if and only

if Pe < D2. Combining with θe = θU(Pe) when q = 1, we obtain θU(Pe) > θe when q ∈ (1−ε, 1).

That is θe ∈ [D2, θ
U(Pe)] ⊂ [D2, θ].

To conclude, θe and Pe derived above is the unique equilibrium critical cash flow and asset

price in the baseline model. Thus, the creditors’ beliefs and asset buyers’ beliefs are consistent.

�

Appendix B.2 Proposition 3. Bank capital and illiquidity

Proof. We show that increasing capital is less able, or even has no effect in reducing a bank’s

illiquidity risk when asset price is endogenous.

From (16), we obtain

∂IL
∂∆

= −
qD1

Pe − qD1

(Pe − qD1)
√

(D1 + D2 + θ)2 − 8D1θ − (D2 − D1)Pe

(Pe − qD1)
√

(D1 + D2 + θ)2 − 8D1θ

Provided that Pe > D1, we have sgn
Ä
∂IL
∂∆

ä
= −sgn

î
(Pe − qD1)

√
(D1 + D2 + θ)2 − 8D1θ − (D2 − D1)Pe

ó
.

With the analytical form of Pe from Appendix B.2, we have

sgn
[
(Pe − qD1)

»
(D1 + D2 + θ)2 − 8D1θ − (D2 − D1)Pe

]
= sgn [D1(D2 − Pe) + (θ − D1)(Pe − D1)]
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When θ = 0, it can be further verified that Pe = D1+D2
2 and D1(D2−Pe)+(θ−D1)(Pe−D1) = 0.

Thus, we obtain sgn
Ä
∂IL
∂∆

ä
= 0. In this case, increasing capital (increase ∆) has no effect on a

bank’s illiquidity risk.

When θ > 0, we take the derivative ∂
∂θ

[D1(D2 − Pe) + (θ − D1)(Pe − D1)] = (θ − 2D1)∂Pe
∂θ

+

(Pe−D1). Recall again Pe =
(D1+D2+θ)+

√
(D1+D2+θ)2−8D1θ

4 , we can calculate ∂Pe
∂θ

= Pe−D1√
(D1+D2+θ)2−8D1θ

.

Thus, we have

(θ − 2D1)
∂Pe

∂θ
+ (Pe − D1) = (Pe − D1)

θ − 2D1 +
√

(D1 + D2 + θ)2 − 8D1θ
√

(D1 + D2 + θ)2 − 8D1θ
.

As Pe > D1, the sign of this term depends on θ − 2D1 +
√

(D1 + D2 + θ)2 − 8D1θ. When

2D1 < θ, this term is of course larger than zero. When 2D1 > θ, it can be verified that

(D1 + D2 + θ)2 − 8D1θ > (2D1 − θ)2. Again, we have the term is larger than zero. When θ > 0,

we proved that
∂

∂θ
[D1(D2 − Pe) + (θ − D1)(Pe − D1)] > 0.

Notice that D1(D2 − Pe) + (θ−D1)(Pe −D1) = 0 when θ = 0. As a result, when θ > 0, this term

is larger than zero. In the end, we have

sgn
Ç
∂IL
∂∆

å
= −sgn (D1(D2 − Pe) + (θ − D1)(Pe − D1)) < 0.

Increasing capital reduces illiquidity risk in the cases where θ > 0.

To summarize, when θ = 0, increasing capital has no effect on illiquidity risk. When θ > 0,

Increasing capital reduces illiquidity risk. But one thing should be emphasized is that increasing

capital is less able to reduce illiquidity because of the “inferencing effect”. �

Appendix B.3 Lemma 2. The monotonicity of F1(θ)

Proof. We start with F1(θ), the buyers’ expected payoff when they expecting one bank run.

With the ex post beliefs about state estabilished, F1(θ) can be explicitly expressed as:

F1(θ) =
θ − θB

(θ − θB) + (θ − θG)
θ + θB

2
+

θ − θG

(θ − θB) + (θ − θG)
θ + θG

2
−

qD1

1 − D2−D1
θ

=
1
2

2θ2 − (θ2
B + θ2

G)
2θ − (θB + θG)

−
qD1θ

θ − (D2 − D1)

43



To check the monotonicity of F1(θ), we take the derivative:

dF1(θ)
dθ

=
1
2

[2θ − (θB + θG)]2 + (θB − θG)2

[2θ − (θB + θG)]2 +
qD1(D2 − D1)

[θ − (D2 − D1)]2 > 0

�

Appendix B.4 Proposition 4. The existence and uniqueness of θ∗1

Proof. It takes two steps to prove Proposition 4. First, we prove the existence and the unique-

ness of θ∗1 in the interval [D2, θ]. Second, we prove the equilibrium cash flow θ∗1 ∈ [θL, θU(P∗1)]

and the equilibrium price P∗1 ∈ (D1,D2). Note that F1(θ) can be rewritten as

F1(θ) = ωB
1 (θ, 1)πB(θ) + ωG

1 (θ, 1)πG(θ),

where πs(θ) =
θs+θ

2 −
qD1θ

θ−(D2−D1) . Thus, the equilibrium condition can be also rewritten as

ωB
1 (θ∗1)πB(θ∗1) + ωG

1 (θ∗1)πG(θ∗1) = 0 (B.27)

Step 1: We prove by continuity that there exists θ∗1 ∈ [D2, θ] such that F1(θ∗1) = 0.

We value the function F1(θ) at θ = D2. Notice that

ωB
1 (D2) =

D2 − θB

(D2 − θB) + (D2 − θG)
> 0 and ωG

1 (D2) =
D2 − θG

(D2 − θB) + (D2 − θG)
> 0.

Moreover, as q sufficiently close to 1, it holds that

πB(D2) =
D2 + θB

2
− qD2 < 0 and πG(D2) =

D2 + θG

2
− qD2 < 0,

by the parameter assumption 1. Therefore, we have F1(D2) < 0.

Now we examine F1(θ) at θ = θ. Similarly, we have

ωB
1 (θ) =

θ − θB

(θ − θB) + (θ − θG)
> 0, and ωG

1 (θ) =
θ − θG

(θ − θB) + (θ − θG)
> 0.

And under our assumption 2, it holds that

πB(θ) =
θ + θB

2
−

qD1θ

θ − (D2 − D1)
> 0 and πG(θ) =

θ + θG

2
−

qD1θ

θ − (D2 − D1)
> 0.
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These inequalities hold when q is sufficiently close to 1 as

lim
q→1−

πB(θ) =
(θ + θB)(θ − F) − 2D1θ

θ − F
>

2D2(θ − F) − 2D1θ

θ − F
>

2F(θ − D2)
θ − F

Notice that D2−D1 tends to F when q→ 11. The first inequality is by the efficiency assumption

2, θ+θB
2 > D2. And θ > D2 follows the efficiency assumption 2 as well. The proof πG(θ) > 0 of

course holds. Therefore, we have: F1(θ) > 0. By the continuity of function F1(θ), there exists

θ∗1 ∈ (D2, θ) such that F1(θ∗1) = 0.

Step 2: We prove P∗1 ∈ (D1,D2) and θ∗1 < θ
U(P∗1).

Note that θ∗1 = D2−D1
1−qD1/P∗1

holds in equilibrium. This P∗1 is unique for θ∗1 ∈ [D2, θ], as such θ∗1 is

unique. Moreover, P∗1 can not be equal to D1. Otherwise, θ∗1 can never belong to a finite region

[D2, θ].

We then consider the case when q→ 1: limq→1
D2−D1

1− q
P∗1

D1
= D2−D1

1− D1
P∗1

. It can be seen that D2−D1

1− D1
P∗1

> 0

only if P∗1 > D1 and D2−D1

1− D1
P∗1

> θL = D2 only if P∗1 < D2. Thus, we prove P∗1 belongs to (D1,D2).

With θ∗1 = D2−D1
1−qD1/P∗e

, F1(θ∗1) = 0 can be also rewritten as ωB
1 (P∗1) · πB(P∗1) + ωG

1 (P∗1) · πG(P∗1) = 0.

Hence, such P∗1 indeed makes the asset buyers earn zero profit when one bank run is observed.

Similar as in Appendix B.1, the derivative limq→1−
d
dq

î
θU(P∗1) − θ̂(P∗1)

ó
=

P∗1−D2

P∗1
. Having

proved P∗1 < D2, θU(P∗1) > θ̂(P∗1) when q ∈ (1− ε, 1). That is θ∗1 ∈ [D2, θ
U(P∗1)] ⊂ [D2, θ]. Recall

Appendix A, such θ∗1 = D2−D1
1−qD1/P∗1

is indeed a threshold equilibrium given asset price P∗1.

To summarize, the unique price P∗1 ∈ (D1,D2) indeed makes the asset buyers make zero

profit, and no incentive to deviate. And the unique θ∗1 ∈ [D2, θ] is indeed an equilibrium critical

cash flow. Combine those two, the equilibrium {θ∗1, P
∗
1} exists and is unique when one bank run

is observed. �

Appendix B.5 Lemma 3. The monotonicity of F2(θ)

Proof. We show the monotonicity of F2(θ), the buyers’ expected payoff when they expecting

two bank runs. We write explicitly function F2(θ) as:

F2(θ) =
1
2

[
(θ − θB)2(θ + θB)

(θ − θB)2 + (θ − θG)2 +
(θ − θG)2(θ + θG)

(θ − θB)2 + (θ − θG)2

]
−

qD1θ

θ − (D2 − D1)
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Again, we take the derivative of F2(θ) respect to θ. The derivative to θ of the first term in the

parenthesis is:

2(θ + θB)[(θ − θG)2(θ − θB) − (θ − θB)2(θ − θG)] + (θ − θB)4 + (θ − θB)2(θ − θG)2

[(θ − θB)2 + (θ − θG)2]2

The derivative to θ of the second term in the parenthesis is:

2(θ + θG)[(θ − θB)2(θ − θG) − (θ − θG)2(θ − θB)] + (θ − θG)4 + (θ − θB)2(θ − θG)2

[(θ − θB)2 + (θ − θG)2]2

Notice that

2(θ + θB)[(θ − θG)2(θ − θB) − (θ − θB)2(θ − θG)] + 2(θ + θG)[(θ − θB)2(θ − θG) − (θ − θG)2(θ − θB)]

= 2(θG − θB)2(θ − θB)(θ − θG) > 0

And the derivative for the last term is again, −dP(θ)
dθ , positive. Put these discussions altogether,

we obtain

dF2(θ)
dθ

=
2(θG − θB)2(θ − θB)(θ − θG) + (θ − θB)4 + (θ − θG)4 + 2(θ − θB)2(θ − θG)2

2[(θ − θB)2 + (θ − θG)2]2 +
qD1(D2 − D1)

[θ − (D2 − D1)]2 > 0

�

Appendix B.6 Proposition 5. The existence and uniqueness of θ∗2

Proof. We follow the same argument as the proof in Appendix B.4. Similar;y, the equilibrium

condition can be expressed as

F2(θ∗2) = ωB
2 (θ∗2)πB(θ∗2) + ωG

2 (θ∗2)πG(θ∗2) = 0 (B.28)

To check the step 1. Notice that:

ωB
2 (D2) =

(D2 − θ1)2

(D2 − θB)2 + (D2 − θG)2 > 0, ωG
2 (D2) =

(D2 − θG)2

(D2 − θB)2 + (D2 − θG)2 > 0.

Moreover,

ωB
2 (θ) =

(θ − θB)2

(θ − θB)2 + (θ − θG)2 > 0, ωG
2 (θ) =

(θ − θG)2

(θ − θB)2 + (θ − θG)2 > 0

46



The sign of function F2(θ) depends on πB(θ) and πG(θ), which have the same definitions as in

Appendix B.4. We have already showed that: πB(D2) < 0, πB(θ) > 0 and πG(D2) < 0, πG(θ) > 0.

Thus we can again claim:

F2(D2) < 0 and F2(θ) > 0.

By the continuity of F2(θ), there exists a θ∗2 ∈ (D2, θ) satisfying F2(θ∗2) = 0. Then by Lemma 1,

θ∗2 necessarily belongs to
(
D2, θ

U(P∗2)
)

with P∗2 =
qD1θ

∗
2

θ−(D2−D1) .

Since F2 is monotonically increasing in θ, the uniqueness of this θ∗2 is again guaranteed.

The equilibrium {θ∗2, P
∗
2} exists and is unique.

Then step 2 follows exactly the procedure as in Appendix B.4, we thus omit it. �

Appendix B.7 Proposition 6. Financial contagion

Proof. The proof hinges on the monotonicity of two ratios

ωB
2 (θ)

ωG
2 (θ)

=
(θ − θB)2

(θ − θG)2 and
πG(θ)
πB(θ)

=

θ+θG
2 − P(θ)

θ+θB
2 − P(θ)

.

The first is a conditional likelihood ratio and the second is a payoff ratio. It can be shown both

ratios are strictly monotonically decreasing in θ, that is

d
dθ

Ç
ωB

2 (θ)
ωG

2 (θ)

å
= −

2(θ − θB)(θG − θB)
(θ − θG)

< 0

d
dθ

Ç
πG(θ)
πB(θ)

å
= −

[ 1
2 − P′(θ)][ θG−θB

2 ]

[ θ+θB
2 − P(θ)]

< 0

We focus on the interior realization of cash flow, then θ > θG. And remember P′(θ) < 0 from

the Appendix B.4.

Furthermore, notice that for ωB
1 (θ)/ωG

1 (θ) > 1, we have

ωB
1 (θ)

ωG
1 (θ)

<
ï
ωB

1 (θ)
ωG(θ)

ò2

=
ωB

2 (θ)
ωG

2 (θ)
(B.29)

Now we prove by contradiction. Suppose θ∗1 > θ
∗∗
2 . By the monotonicity of πG(θ)/πB(θ), we

will have
πG(θ∗1)
πB(θ∗1)

<
πG(θ∗∗2 )
πB(θ∗∗2 )

.
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By the equilibrium conditions (B.27) and B.28, we have

πG(θ∗1)
πB(θ∗1)

= −
ωB

1 (θ∗1)
ωG

1 (θ∗1)
and

πG(θ∗∗2 )
πB(θ∗∗2 )

= −
ωB

2 (θ∗∗2 )
ωG

2 (θ∗∗2 )
,

which implies
ωB

2 (θ∗∗2 )
ωG

2 (θ∗∗2 )
<
ωB

1 (θ∗1)
ωG

1 (θ∗1)
.

By condition (B.29), we know

ωB
2 (θ∗∗2 )

ωG
2 (θ∗∗2 )

<
ωB

1 (θ∗1)
ωG

1 (θ∗1)
<
ωB

2 (θ∗1)
ωG

2 (θ∗1)
.

But this contradicts the monotonicity of ωB
2 (θ)/ωG

2 (θ). Therefore, we prove θ∗∗2 > θ∗1. �

Appendix B.8 Lemma 4. Regulator’s break even price P∗A

Proof. By inserting (21) into (22), one can obtain the following equation.

4(PA)2 − [2(D2 − D1) + 4qD1 + (θB + θG)]PA + qD1(θB + θG) = 0

The positive solution of this quadratic function is

P∗A =
[2(D2 − D1) + 4qD1 + (θB + θG)] +

»
[2(D2 − D1) + 4qD1 + (θB + θG)]2 − 16qD1(θB + θG)

8

Following the proof in Appendix B.1, we can check that P∗A ∈ (D1,D2). Moreover, we can also

check that the regulator does not have profitable deviation by unilaterally bid higher price than

P∗A. �

Appendix B.9 Proposition 7. Asset purchase

Proof. Recall that θ∗1 solves F1(θ∗1) = 0. F1(θ) can be rewritten as

F1(θ) =
1
2
θB + θ

2
+

1
2
θG + θ

2
−

qD1θ

θ − (D2 − D1)
−

(θG − θB)2

4[(θ − θG) + (θ − θB)]

While, we can define

FA(θ) =
1
2
θB + θ

2
+

1
2
θG + θ

2
−

qD1θ

θ − (D2 − D1)
,
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where FA(θ∗A) = 0. Insert θa into it, we have

F1(θ∗A) = FA(θ∗A) −
(θG − θB)2

4[(θ − θG) + (θ − θB)]
= −

(θG − θB)2

4[(θ − θG) + (θ − θB)]
< 0

Recall again F1(θ) is increasing in θ. We have θ∗A < θ
∗
1. Then P∗A > P∗1 immediately follows. �

Appendix B.10 Lemma 5. Regulatory disclosure and bank runs

Proof. We solve here only for the equilibrium in state s = G. The equilibrium under s = 1

can be solved with the same procedure. The equilibrium is determined by a system of two

equations: 
θG

e = D2−D1
1− q

PG
e

D1

PG
e =

θG
e +θG

2

Solving the system of equations as in the Appendix B, we have the equilibrium critical cash

flow and the endogenous fire-sale price:

θG
e =

(D2 − D1) + 2qD1 − θG +
»

[(D2 − D1) + 2qD1 − θG]2 + 4(D2 − D1)θG

2

PG
e =

(D2 − D1) + 2qD1 + θG ±
»

[(D2 − D1) + 2qD1 + θG]2 − 8qD1θG

4

When q is sufficiently close to 1, we have

θG
e =

(D1 + D2 − θG) +
»

[D1 + D2 − θG]2 + 4FθG

2

PG
e =

(D1 + D2 + θG) +
»

[D1 + D2 + θG]2 − 8D1θG

4

It is straightforward to check that θ∗G ∈ (D2, θ] as in Appendix B.2. �

Appendix B.11 Proposition 8. Regulatory disclosure and illiquidity

Proof. We start by proving θG
e < θ∗1. Recall that F1(θ∗1) = 0 and F1(θ) is monotonically increas-

ing. So θG
e < θ∗1 will hold if and only if F1(θG

e ) < 0. To proceed, we write F1(θ) explicitly

F1(θ) =
θ − θB

(θ − θB) + (θ − θG)
θ + θB

2
+

θ − θG

(θ − θB) + (θ − θG)
θ + θG

2
−

qD1θ

θ − (D2 − D1)
.
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We can rewrite F1(θ) as follows

F1(θ) =
θ − θB

(θ − θB) + (θ − θG)

ñ
θ + θB

2
−
θ + θG

2

ô
+
θ + θG

2
−

qD1θ

θ − (D2 − D1)
.

= −
θ − θB

(θ − θB) + (θ − θG)
θG − θB

2
+
θ + θG

2
−

qD1θ

θ − (D2 − D1)
.

We then evaluation F1(θ) at θG
e , that is

F1(θG
e ) = −

θG
e − θB

(θG
e − θB) + (θG

e − θG)
θG − θB

2
< 0.

Remember that the term θG
e +θG

2 −
qD1θ

G
e

θG
e −(D2−D1) =

θG
e +θG

2 − PG
e = 0. Then we have θG

e < θ∗e.

We then prove θB
e > θ∗∗2 . Recall that F2(θ∗∗e ) = 0 and F2(θ) is monotonically increasing. So

θB
e > θ

∗∗
e will hold if and only if F2(θB

e ) > 0. Similarly, we can write F2(θ) as

F2(θ) =
(θ − θG)2

(θ − θB)2 + (θ − θG)2

θG − θB

2
+
θ + θB

2
−

qD1θ

θ − (D2 − D1)
.

We evaluation F2(θ) at θB
e , and for the similar argument

F2(θB
e ) =

(θB
e − θG)2

(θB
e − θB)2 + (θB

e − θG)2

θG − θB

2
> 0

Then we have θB
e > θ

∗∗
2 .

�

Appendix B.12 Proposition 9. Socially undesirable disclosure

Proof. It can be seen easily S CAP < S CRT if and only if θa < θG
e +θB

e
2 . Consider the auxiliary

function

G(θ) =
2qD1θ

θ − (D2 − D1)
− θ.

Then θa satisfies G(θa) =
θB+θG

2 . θG
e and θB

e combined satisfy 1
2G(θG

e ) + 1
2G(θB

e ) =
θB+θG

2 . Together

we obtain

G(θa) =
1
2

G(θG
e ) +

1
2

G(θB
e )
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It is fairly easy to check that G′ = − 2qD1(D2−D1)
[θ−(D2−D1)]2 < 0 and G′′(θ) = 4qD1(D2−D1)[θ−(D2−D1)]

[θ−(D2−D1)]4 > 0, thus

G is a decreasing convex function. We further have

G(θa) =
1
2

G(θG
e ) +

1
2

G(θB
e ) > G(

θG
e + θB

e

2
)

Lastly, because the function G is decreasing, we obtain θ∗A < θG
e +θB

e
2 . The social cost due to

illiquidity is lower than the regulator chooses to implement the asset purchase program.

�
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